Div

Description

Performs element-wise binary division (with Numpy-style broadcasting support). This operator supportsΒ multidirectional (i.e., Numpy-style) broadcasting; for more details please checkΒ Broadcasting in ONNX.

 

Input parameters

 

specified_outputs_name :Β array, this parameter lets you manually assign custom names to the output tensors of a node.

Β Graphs in :Β cluster, ONNX model architecture.

A (heterogeneous) – T : object, first operand.
B (heterogeneous) – T : object, second operand.

Β Parameters :Β cluster,

Β training?Β :Β boolean, whether the layer is in training mode (can store data for backward).
Default value β€œTrue”.
Β lda coeff :Β float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value β€œ1”.

Β name (optional) :Β string, name of the node.

Output parameters

 

Β C (heterogeneous) – T : object, result, has same element type as two inputs.

Type Constraints

T in (tensor(bfloat16),Β tensor(double),Β tensor(float),Β tensor(float16),Β tensor(int16),Β tensor(int32),Β tensor(int64),Β 
tensor(int8),Β tensor(uint16),Β tensor(uint32),Β tensor(uint64),Β tensor(uint8)) : Constrain input and output types to all numeric tensors.

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install Deep Learning library to run it).
Table of Contents