-                 
		Deep Learning
- 
							 			- 
						 
		- Resume
- Add
- AlphaDropout
- AdditiveAttention
- Attention
- Average
- AvgPool1D
- AvgPool2D
- AvgPool3D
- BatchNormalization
- Bidirectional
- Concatenate
- Conv1D
- Conv1DTranspose
- Conv2D
- Conv2DTranspose
- Conv3D
- Conv3DTranspose
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Dense
- Cropping1D
- Cropping2D
- Cropping3D
- DepthwiseConv2D
- Dropout
- Embedding
- Flatten
- ELU
- Exponential
- GaussianDropout
- GaussianNoise
- GlobalAvgPool1D
- GlobalAvgPool2D
- GlobalAvgPool3D
- GlobalMaxPool1D
- GlobalMaxPool2D
- GlobalMaxPool3D
- GRU
- GELU
- Input
- LayerNormalization
- LSTM
- MaxPool1D
- MaxPool2D
- MaxPool3D
- MultiHeadAttention
- HardSigmoid
- LeakyReLU
- Linear
- Multiply
- Permute3D
- Reshape
- RNN
- PReLU
- ReLU
- SELU
- Output Predict
- Output Train
- SeparableConv1D
- SeparableConv2D
- SimpleRNN
- SpatialDropout
- Sigmoid
- SoftMax
- SoftPlus
- SoftSign
- Split
- UpSampling1D
- UpSampling2D
- UpSampling3D
- ZeroPadding1D
- ZeroPadding2D
- ZeroPadding3D
- Swish
- TanH
- ThresholdedReLU
- Substract
- Show All Articles (63) Collapse Articles
 
- 
						 
		 			- 
						 
		 			
- 
						 			- 
						 
		- Exp
- Identity
- Abs
- Acos
- Acosh
- ArgMax
- ArgMin
- Asin
- Asinh
- Atan
- Atanh
- AveragePool
- Bernouilli
- BitwiseNot
- BlackmanWindow
- Cast
- Ceil
- Celu
- ConcatFromSequence
- Cos
- Cosh
- DepthToSpace
- Det
- DynamicTimeWarping
- Erf
- EyeLike
- Flatten
- Floor
- GlobalAveragePool
- GlobalLpPool
- GlobalMaxPool
- HammingWindow
- HannWindow
- HardSwish
- HardMax
- lrfft
- lsNaN
- Log
- LogSoftmax
- LpNormalization
- LpPool
- LRN
- MeanVarianceNormalization
- MicrosoftGelu
- Mish
- Multinomial
- MurmurHash3
- Neg
- NhwcMaxPool
- NonZero
- Not
- OptionalGetElement
- OptionalHasElement
- QuickGelu
- RandomNormalLike
- RandomUniformLike
- RawConstantOfShape
- Reciprocal
- ReduceSumInteger
- RegexFullMatch
- Rfft
- Round
- SampleOp
- Shape
- SequenceLength
- Shrink
- Sin
- Sign
- Sinh
- Size
- SpaceToDepth
- Sqrt
- StringNormalizer
- Tan
- TfldfVectorizer
- Tokenizer
- Transpose
- UnfoldTensor
- lslnf
- ImageDecoder
- Inverse
- Show All Articles (65) Collapse Articles
 
 
- 
						 
		
- 
						 			- 
						 
		- Add
- AffineGrid
- And
- BiasAdd
- BiasGelu
- BiasSoftmax
- BiasSplitGelu
- BitShift
- BitwiseAnd
- BitwiseOr
- BitwiseXor
- CastLike
- CDist
- CenterCropPad
- Clip
- Col2lm
- ComplexMul
- ComplexMulConj
- Compress
- ConvInteger
- Conv
- ConvTranspose
- ConvTransposeWithDynamicPads
- CropAndResize
- CumSum
- DeformConv
- DequantizeBFP
- DequantizeLinear
- DequantizeWithOrder
- DFT
- Div
- DynamicQuantizeMatMul
- Equal
- Expand
- ExpandDims
- FastGelu
- FusedConv
- FusedGemm
- FusedMatMul
- FusedMatMulActivation
- GatedRelativePositionBias
- Gather
- GatherElements
- GatherND
- Gemm
- GemmFastGelu
- GemmFloat8
- Greater
- GreaterOrEqual
- GreedySearch
- GridSample
- GroupNorm
- InstanceNormalization
- Less
- LessOrEqual
- LongformerAttention
- MatMul
- MatMulBnb4
- MatMulFpQ4
- MatMulInteger
- MatMulInteger16
- MatMulIntergerToFloat
- MatMulNBits
- MaxPoolWithMask
- MaxRoiPool
- MaxUnPool
- MelWeightMatrix
- MicrosoftDequantizeLinear
- MicrosoftGatherND
- MicrosoftGridSample
- MicrosoftPad
- MicrosoftQLinearConv
- MicrosoftQuantizeLinear
- MicrosoftRange
- MicrosoftTrilu
- Mod
- MoE
- Mul
- MulInteger
- NegativeLogLikelihoodLoss
- NGramRepeatBlock
- NhwcConv
- NhwcFusedConv
- NonMaxSuppression
- OneHot
- Or
- PackedAttention
- PackedMultiHeadAttention
- Pad
- Pow
- QGemm
- QLinearAdd
- QLinearAveragePool
- QLinearConcat
- QLinearConv
- QLinearGlobalAveragePool
- QLinearLeakyRelu
- QLinearMatMul
- QLinearMul
- QLinearReduceMean
- QLinearSigmoid
- QLinearSoftmax
- QLinearWhere
- QMoE
- QOrderedAttention
- QOrderedGelu
- QOrderedLayerNormalization
- QOrderedLongformerAttention
- QOrderedMatMul
- QuantizeLinear
- QuantizeWithOrder
- Range
- ReduceL1
- ReduceL2
- ReduceLogSum
- ReduceLogSumExp
- ReduceMax
- ReduceMean
- ReduceMin
- ReduceProd
- ReduceSum
- ReduceSumSquare
- RelativePositionBias
- Reshape
- Resize
- RestorePadding
- ReverseSequence
- RoiAlign
- RotaryEmbedding
- ScatterElements
- ScatterND
- SequenceAt
- SequenceErase
- SequenceInsert
- Sinh
- Slice
- SparseToDenseMatMul
- SplitToSequence
- Squeeze
- STFT
- StringConcat
- Sub
- Tile
- TorchEmbedding
- TransposeMatMul
- Trilu
- Unsqueeze
- Where
- WordConvEmbedding
- Xor
- Show All Articles (134) Collapse Articles
 
- 
						 
		- Attention
- AttnLSTM
- BatchNormalization
- BiasDropout
- BifurcationDetector
- BitmaskBiasDropout
- BitmaskDropout
- DecoderAttention
- DecoderMaskedMultiHeadAttention
- DecoderMaskedSelfAttention
- Dropout
- DynamicQuantizeLinear
- DynamicQuantizeLSTM
- EmbedLayerNormalization
- GemmaRotaryEmbedding
- GroupQueryAttention
- GRU
- LayerNormalization
- LSTM
- MicrosoftMultiHeadAttention
- QAttention
- RemovePadding
- RNN
- Sampling
- SkipGroupNorm
- SkipLayerNormalization
- SkipSimplifiedLayerNormalization
- SoftmaxCrossEntropyLoss
- SparseAttention
- TopK
- WhisperBeamSearch
- Show All Articles (15) Collapse Articles
 
 
- 
						 
		
 
 
- 
						 
		 			
- 
						 
		 			
- 
						 			
- 
						 			
 
- 
						 
		
- 
							 
		 			
- 
							 
		 			- 
						 
		 			- 
						 
		- AdditiveAttention
- Attention
- BatchNormalization
- Bidirectional
- Conv1D
- Conv2D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Dense
- DepthwiseConv2D
- Embedding
- LayerNormalization
- GRU
- LSTM
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- MutiHeadAttention
- SeparableConv1D
- SeparableConv2D
- MultiHeadAttention
- RNN (GRU)
- RNN (LSTM)
- RNN (SimpleRNN)
- SimpleRNN
- 1D
- 2D
- 3D
- 4D
- 5D
- 6D
- Scalar
- Show All Articles (22) Collapse Articles
 
- 
						 
		- AdditiveAttention
- Attention
- BatchNormalization
- Conv1D
- Conv2D
- Conv1DTranspose
- Conv2DTranspose
- Bidirectional
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv3DTranspose
- DepthwiseConv2D
- Dense
- Embedding
- LayerNormalization
- GRU
- PReLU 2D
- PReLU 3D
- PReLU 4D
- MultiHeadAttention
- LSTM
- PReLU 5D
- SeparableConv1D
- SeparableConv2D
- SimpleRNN
- RNN (GRU)
- RNN (LSTM)
- RNN (SimpleRNN)
- 1D
- 2D
- 3D
- 4D
- 5D
- 6D
- Scalar
- Show All Articles (21) Collapse Articles
 
 
- 
						 
		
- 
						 
		- AdditiveAttention
- Attention
- BatchNormalization
- Bidirectional
- Conv1D
- Conv2D
- Conv3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Dense
- DepthwiseConv2D
- Embedding
- GRU
- LayerNormalization
- LSTM
- MultiHeadAttention
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- Resume
- SeparableConv1D
- SeparableConv2D
- SimpleRNN
- Show All Articles (12) Collapse Articles
 
- 
						 
		- Accuracy
- BinaryAccuracy
- BinaryCrossentropy
- BinaryIoU
- CategoricalAccuracy
- CategoricalCrossentropy
- CategoricalHinge
- CosineSimilarity
- FalseNegatives
- FalsePositives
- Hinge
- Huber
- IoU
- KLDivergence
- LogCoshError
- Mean
- MeanAbsoluteError
- MeanAbsolutePercentageError
- MeanIoU
- MeanRelativeError
- MeanSquaredError
- MeanSquaredLogarithmicError
- MeanTensor
- OneHotIoU
- OneHotMeanIoU
- Poisson
- Precision
- PrecisionAtRecall
- Recall
- RecallAtPrecision
- RootMeanSquaredError
- SensitivityAtSpecificity
- SparseCategoricalAccuracy
- SparseCategoricalCrossentropy
- SparseTopKCategoricalAccuracy
- Specificity
- SpecificityAtSensitivity
- SquaredHinge
- Sum
- TopKCategoricalAccuracy
- TrueNegatives
- TruePositives
- Resume
- Show All Articles (27) Collapse Articles
 
 
- 
						 
		 			
 
-                 
		Accelerator
-                 
		Constant
-                 
		Generator
-                 
		Full Train Step
-                 
		Eval Step
-                 
		Train Step
3D Data to Loss Input Array by index
Description
This VI adds a new input entry (of type BOOL, SGL, INT, UINT, or STRING) to an existing array of loss input data clusters. It is used to progressively build a structured list of model loss inputs. Once constructed, the full array of loss input clusters can be passed to Training Multi-Input Execution VIs, which perform training using all specified loss inputs in a single execution step. Type : polymorphic.

Input parameters
 Β 3D Input Data : array,Β 3D array of data with any type : integers (signed/unsigned), floats, doubles, booleans, or strings.
Β 3D Input Data : array,Β 3D array of data with any type : integers (signed/unsigned), floats, doubles, booleans, or strings.
 Data in : array,Β is an array of clusters, where each cluster represents a single model input. Each cluster contains metadata and raw data required to describe and pass an input tensor to the model.
 Data in : array,Β is an array of clusters, where each cluster represents a single model input. Each cluster contains metadata and raw data required to describe and pass an input tensor to the model.
 Β y_true_order :Β integer,Β defines the position of the input within the data array. It corresponds to the index assigned to the input when it is created (via theΒ indexΒ parameter).
Β y_true_order :Β integer,Β defines the position of the input within the data array. It corresponds to the index assigned to the input when it is created (via theΒ indexΒ parameter). Β Inputs Info :Β cluster
Β Inputs Info :Β cluster
 Β inputs_data :Β array,Β contains the raw byte representation of the input tensor data, stored as a 1D flattened buffer.
Β inputs_data :Β array,Β contains the raw byte representation of the input tensor data, stored as a 1D flattened buffer. Β inputs_shapes :Β array,Β specifies the shape of the input tensor. Since the data is stored as a flattened 1D buffer, this shape is necessary to reconstruct the original dimensions.
Β inputs_shapes :Β array,Β specifies the shape of the input tensor. Since the data is stored as a flattened 1D buffer, this shape is necessary to reconstruct the original dimensions. Β inputs string length :Β array,Β used when the tensor type is string. If the tensor has shapeΒ
Β inputs string length :Β array,Β used when the tensor type is string. If the tensor has shapeΒ [5,3], this field contains 15 values, each representing the length of a corresponding string element. This ensures that the actual size ofΒ inputs_dataΒ is known despite variable string lengths. Β inputs_ranks :Β array,Β indicates the rank of the tensor, i.e. the number of dimensions (Scalar = 0, 1D = 1, 2D = 2, etc.).
Β inputs_ranks :Β array,Β indicates the rank of the tensor, i.e. the number of dimensions (Scalar = 0, 1D = 1, 2D = 2, etc.). Β inputs_types :Β array,Β defines the ONNX tensor type as an enumerated value (e.g. FLOAT, INT64, STRING).
Β inputs_types :Β array,Β defines the ONNX tensor type as an enumerated value (e.g. FLOAT, INT64, STRING).
β
 
			 Β input order : integer,Β defines the position of the input within the data array. It corresponds to the index assigned to the input when it is created (via theΒ indexΒ parameter).
Β input order : integer,Β defines the position of the input within the data array. It corresponds to the index assigned to the input when it is created (via theΒ indexΒ parameter).
Output parameters
 Β Data out : array,Β is an array of clusters, where each cluster represents a single model input. Each cluster contains metadata and raw data required to describe and pass an input tensor to the model.
Β Data out : array,Β is an array of clusters, where each cluster represents a single model input. Each cluster contains metadata and raw data required to describe and pass an input tensor to the model.
 Β y_true_order :Β integer,Β defines the position of the input within the data array. It corresponds to the index assigned to the input when it is created (via theΒ indexΒ parameter).
Β y_true_order :Β integer,Β defines the position of the input within the data array. It corresponds to the index assigned to the input when it is created (via theΒ indexΒ parameter). Β Inputs Info :Β cluster
Β Inputs Info :Β cluster
 Β inputs_data : array,Β contains the raw byte representation of the input tensor data, stored as a 1D flattened buffer.
Β inputs_data : array,Β contains the raw byte representation of the input tensor data, stored as a 1D flattened buffer. Β inputs_shapes :Β array,Β specifies the shape of the input tensor. Since the data is stored as a flattened 1D buffer, this shape is necessary to reconstruct the original dimensions.
Β inputs_shapes :Β array,Β specifies the shape of the input tensor. Since the data is stored as a flattened 1D buffer, this shape is necessary to reconstruct the original dimensions. Β inputs string length :Β array,Β used when the tensor type is string. If the tensor has shapeΒ
Β inputs string length :Β array,Β used when the tensor type is string. If the tensor has shapeΒ [5,3], this field contains 15 values, each representing the length of a corresponding string element. This ensures that the actual size ofΒ inputs_dataΒ is known despite variable string lengths. Β inputs_ranks :Β array,Β indicates the rank of the tensor, i.e. the number of dimensions (Scalar = 0, 1D = 1, 2D = 2, etc.).
Β inputs_ranks :Β array,Β indicates the rank of the tensor, i.e. the number of dimensions (Scalar = 0, 1D = 1, 2D = 2, etc.). Β inputs_types :Β array,Β defines the ONNX tensor type as an enumerated value (e.g. FLOAT, INT64, STRING).
Β inputs_types :Β array,Β defines the ONNX tensor type as an enumerated value (e.g. FLOAT, INT64, STRING).
β
 
			Example
All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install Deep Learning library to run it).
