-                 
		Deep Learning
- 
							 			- 
						 
		- Resume
- Add
- AlphaDropout
- AdditiveAttention
- Attention
- Average
- AvgPool1D
- AvgPool2D
- AvgPool3D
- BatchNormalization
- Bidirectional
- Concatenate
- Conv1D
- Conv1DTranspose
- Conv2D
- Conv2DTranspose
- Conv3D
- Conv3DTranspose
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Dense
- Cropping1D
- Cropping2D
- Cropping3D
- DepthwiseConv2D
- Dropout
- Embedding
- Flatten
- ELU
- Exponential
- GaussianDropout
- GaussianNoise
- GlobalAvgPool1D
- GlobalAvgPool2D
- GlobalAvgPool3D
- GlobalMaxPool1D
- GlobalMaxPool2D
- GlobalMaxPool3D
- GRU
- GELU
- Input
- LayerNormalization
- LSTM
- MaxPool1D
- MaxPool2D
- MaxPool3D
- MultiHeadAttention
- HardSigmoid
- LeakyReLU
- Linear
- Multiply
- Permute3D
- Reshape
- RNN
- PReLU
- ReLU
- SELU
- Output Predict
- Output Train
- SeparableConv1D
- SeparableConv2D
- SimpleRNN
- SpatialDropout
- Sigmoid
- SoftMax
- SoftPlus
- SoftSign
- Split
- UpSampling1D
- UpSampling2D
- UpSampling3D
- ZeroPadding1D
- ZeroPadding2D
- ZeroPadding3D
- Swish
- TanH
- ThresholdedReLU
- Substract
- Show All Articles (63) Collapse Articles
 
- 
						 
		 			- 
						 
		 			
- 
						 			- 
						 
		- Exp
- Identity
- Abs
- Acos
- Acosh
- ArgMax
- ArgMin
- Asin
- Asinh
- Atan
- Atanh
- AveragePool
- Bernouilli
- BitwiseNot
- BlackmanWindow
- Cast
- Ceil
- Celu
- ConcatFromSequence
- Cos
- Cosh
- DepthToSpace
- Det
- DynamicTimeWarping
- Erf
- EyeLike
- Flatten
- Floor
- GlobalAveragePool
- GlobalLpPool
- GlobalMaxPool
- HammingWindow
- HannWindow
- HardSwish
- HardMax
- lrfft
- lsNaN
- Log
- LogSoftmax
- LpNormalization
- LpPool
- LRN
- MeanVarianceNormalization
- MicrosoftGelu
- Mish
- Multinomial
- MurmurHash3
- Neg
- NhwcMaxPool
- NonZero
- Not
- OptionalGetElement
- OptionalHasElement
- QuickGelu
- RandomNormalLike
- RandomUniformLike
- RawConstantOfShape
- Reciprocal
- ReduceSumInteger
- RegexFullMatch
- Rfft
- Round
- SampleOp
- Shape
- SequenceLength
- Shrink
- Sin
- Sign
- Sinh
- Size
- SpaceToDepth
- Sqrt
- StringNormalizer
- Tan
- TfldfVectorizer
- Tokenizer
- Transpose
- UnfoldTensor
- lslnf
- ImageDecoder
- Inverse
- Show All Articles (65) Collapse Articles
 
 
- 
						 
		
- 
						 			- 
						 
		- Add
- AffineGrid
- And
- BiasAdd
- BiasGelu
- BiasSoftmax
- BiasSplitGelu
- BitShift
- BitwiseAnd
- BitwiseOr
- BitwiseXor
- CastLike
- CDist
- CenterCropPad
- Clip
- Col2lm
- ComplexMul
- ComplexMulConj
- Compress
- ConvInteger
- Conv
- ConvTranspose
- ConvTransposeWithDynamicPads
- CropAndResize
- CumSum
- DeformConv
- DequantizeBFP
- DequantizeLinear
- DequantizeWithOrder
- DFT
- Div
- DynamicQuantizeMatMul
- Equal
- Expand
- ExpandDims
- FastGelu
- FusedConv
- FusedGemm
- FusedMatMul
- FusedMatMulActivation
- GatedRelativePositionBias
- Gather
- GatherElements
- GatherND
- Gemm
- GemmFastGelu
- GemmFloat8
- Greater
- GreaterOrEqual
- GreedySearch
- GridSample
- GroupNorm
- InstanceNormalization
- Less
- LessOrEqual
- LongformerAttention
- MatMul
- MatMulBnb4
- MatMulFpQ4
- MatMulInteger
- MatMulInteger16
- MatMulIntergerToFloat
- MatMulNBits
- MaxPoolWithMask
- MaxRoiPool
- MaxUnPool
- MelWeightMatrix
- MicrosoftDequantizeLinear
- MicrosoftGatherND
- MicrosoftGridSample
- MicrosoftPad
- MicrosoftQLinearConv
- MicrosoftQuantizeLinear
- MicrosoftRange
- MicrosoftTrilu
- Mod
- MoE
- Mul
- MulInteger
- NegativeLogLikelihoodLoss
- NGramRepeatBlock
- NhwcConv
- NhwcFusedConv
- NonMaxSuppression
- OneHot
- Or
- PackedAttention
- PackedMultiHeadAttention
- Pad
- Pow
- QGemm
- QLinearAdd
- QLinearAveragePool
- QLinearConcat
- QLinearConv
- QLinearGlobalAveragePool
- QLinearLeakyRelu
- QLinearMatMul
- QLinearMul
- QLinearReduceMean
- QLinearSigmoid
- QLinearSoftmax
- QLinearWhere
- QMoE
- QOrderedAttention
- QOrderedGelu
- QOrderedLayerNormalization
- QOrderedLongformerAttention
- QOrderedMatMul
- QuantizeLinear
- QuantizeWithOrder
- Range
- ReduceL1
- ReduceL2
- ReduceLogSum
- ReduceLogSumExp
- ReduceMax
- ReduceMean
- ReduceMin
- ReduceProd
- ReduceSum
- ReduceSumSquare
- RelativePositionBias
- Reshape
- Resize
- RestorePadding
- ReverseSequence
- RoiAlign
- RotaryEmbedding
- ScatterElements
- ScatterND
- SequenceAt
- SequenceErase
- SequenceInsert
- Sinh
- Slice
- SparseToDenseMatMul
- SplitToSequence
- Squeeze
- STFT
- StringConcat
- Sub
- Tile
- TorchEmbedding
- TransposeMatMul
- Trilu
- Unsqueeze
- Where
- WordConvEmbedding
- Xor
- Show All Articles (134) Collapse Articles
 
- 
						 
		- Attention
- AttnLSTM
- BatchNormalization
- BiasDropout
- BifurcationDetector
- BitmaskBiasDropout
- BitmaskDropout
- DecoderAttention
- DecoderMaskedMultiHeadAttention
- DecoderMaskedSelfAttention
- Dropout
- DynamicQuantizeLinear
- DynamicQuantizeLSTM
- EmbedLayerNormalization
- GemmaRotaryEmbedding
- GroupQueryAttention
- GRU
- LayerNormalization
- LSTM
- MicrosoftMultiHeadAttention
- QAttention
- RemovePadding
- RNN
- Sampling
- SkipGroupNorm
- SkipLayerNormalization
- SkipSimplifiedLayerNormalization
- SoftmaxCrossEntropyLoss
- SparseAttention
- TopK
- WhisperBeamSearch
- Show All Articles (15) Collapse Articles
 
 
- 
						 
		
 
 
- 
						 
		 			
- 
						 
		 			
- 
						 			
- 
						 			
 
- 
						 
		
- 
							 
		 			
- 
							 
		 			- 
						 
		 			- 
						 
		- AdditiveAttention
- Attention
- BatchNormalization
- Bidirectional
- Conv1D
- Conv2D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Dense
- DepthwiseConv2D
- Embedding
- LayerNormalization
- GRU
- LSTM
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- MutiHeadAttention
- SeparableConv1D
- SeparableConv2D
- MultiHeadAttention
- RNN (GRU)
- RNN (LSTM)
- RNN (SimpleRNN)
- SimpleRNN
- 1D
- 2D
- 3D
- 4D
- 5D
- 6D
- Scalar
- Show All Articles (22) Collapse Articles
 
- 
						 
		- AdditiveAttention
- Attention
- BatchNormalization
- Conv1D
- Conv2D
- Conv1DTranspose
- Conv2DTranspose
- Bidirectional
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv3DTranspose
- DepthwiseConv2D
- Dense
- Embedding
- LayerNormalization
- GRU
- PReLU 2D
- PReLU 3D
- PReLU 4D
- MultiHeadAttention
- LSTM
- PReLU 5D
- SeparableConv1D
- SeparableConv2D
- SimpleRNN
- RNN (GRU)
- RNN (LSTM)
- RNN (SimpleRNN)
- 1D
- 2D
- 3D
- 4D
- 5D
- 6D
- Scalar
- Show All Articles (21) Collapse Articles
 
 
- 
						 
		
- 
						 
		- AdditiveAttention
- Attention
- BatchNormalization
- Bidirectional
- Conv1D
- Conv2D
- Conv3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Dense
- DepthwiseConv2D
- Embedding
- GRU
- LayerNormalization
- LSTM
- MultiHeadAttention
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- Resume
- SeparableConv1D
- SeparableConv2D
- SimpleRNN
- Show All Articles (12) Collapse Articles
 
- 
						 
		- Accuracy
- BinaryAccuracy
- BinaryCrossentropy
- BinaryIoU
- CategoricalAccuracy
- CategoricalCrossentropy
- CategoricalHinge
- CosineSimilarity
- FalseNegatives
- FalsePositives
- Hinge
- Huber
- IoU
- KLDivergence
- LogCoshError
- Mean
- MeanAbsoluteError
- MeanAbsolutePercentageError
- MeanIoU
- MeanRelativeError
- MeanSquaredError
- MeanSquaredLogarithmicError
- MeanTensor
- OneHotIoU
- OneHotMeanIoU
- Poisson
- Precision
- PrecisionAtRecall
- Recall
- RecallAtPrecision
- RootMeanSquaredError
- SensitivityAtSpecificity
- SparseCategoricalAccuracy
- SparseCategoricalCrossentropy
- SparseTopKCategoricalAccuracy
- Specificity
- SpecificityAtSensitivity
- SquaredHinge
- Sum
- TopKCategoricalAccuracy
- TrueNegatives
- TruePositives
- Resume
- Show All Articles (27) Collapse Articles
 
 
- 
						 
		 			
 
-                 
		Accelerator
-                 
		Constant
-                 
		Generator
-                 
		Full Train Step
-                 
		Eval Step
-                 
		Train Step
Resize
Description
Resize the input tensor. In general, it calculates every value in the output tensor as a weighted average of neighborhood (a.k.a. sampling locations) in the input tensor. Each dimension value of the output tensor is : output_dimension = floor(input_dimension * (roi_end – roi_start) * scale), if input βsizesβ is not specified.

Input parameters
 specified_outputs_name :Β array, this parameter lets you manually assign custom names to the output tensors of a node.
 specified_outputs_name :Β array, this parameter lets you manually assign custom names to the output tensors of a node.
 Β Graphs in :Β cluster, ONNX model architecture.
Β Graphs in :Β cluster, ONNX model architecture.
 X (heterogeneous) –Β T1 : object, N-D tensor.
 X (heterogeneous) –Β T1 : object, N-D tensor. roi (optional, heterogeneous) – T2Β : object, 1-D tensor given as [start1, β¦, startN, end1, β¦, endN], where N is the rank of X or the length of axes, if provided. The RoIsβ coordinates are normalized in the coordinate system of the input image. It only takes effect when coordinate_transformation_mode is βtf_crop_and_resizeβ.
 roi (optional, heterogeneous) – T2Β : object, 1-D tensor given as [start1, β¦, startN, end1, β¦, endN], where N is the rank of X or the length of axes, if provided. The RoIsβ coordinates are normalized in the coordinate system of the input image. It only takes effect when coordinate_transformation_mode is βtf_crop_and_resizeβ. scales (optional, heterogeneous) –Β tensor(float)Β : object, the scale array along each dimension. It takes value greater than 0. If itβs less than 1, itβs sampling down, otherwise, itβs upsampling. The number of elements of βscalesβ should be the same as the rank of input βXβ or the length of βaxesβ, if provided. One of βscalesβ and βsizesβ MUST be specified and it is an error if both are specified. If βsizesβ is needed, the user can use an empty string as the name of βscalesβ in this operatorβs input list.
 scales (optional, heterogeneous) –Β tensor(float)Β : object, the scale array along each dimension. It takes value greater than 0. If itβs less than 1, itβs sampling down, otherwise, itβs upsampling. The number of elements of βscalesβ should be the same as the rank of input βXβ or the length of βaxesβ, if provided. One of βscalesβ and βsizesβ MUST be specified and it is an error if both are specified. If βsizesβ is needed, the user can use an empty string as the name of βscalesβ in this operatorβs input list. sizes (optional, heterogeneous) –Β tensor(int64)Β : object, target size of the output tensor. Its interpretation depends on the βkeep_aspect_ratio_policyβ value.The number of elements of βsizesβ should be the same as the rank of input βXβ, or the length of βaxesβ, if provided. Only one of βscalesβ and βsizesβ can be specified.
 sizes (optional, heterogeneous) –Β tensor(int64)Β : object, target size of the output tensor. Its interpretation depends on the βkeep_aspect_ratio_policyβ value.The number of elements of βsizesβ should be the same as the rank of input βXβ, or the length of βaxesβ, if provided. Only one of βscalesβ and βsizesβ can be specified.
 
			 Β Parameters : cluster,
Β Parameters : cluster,
 antialias :Β boolean, if set to true, βlinearβ and βcubicβ interpolation modes will use an antialiasing filter when downscaling. Antialiasing is achieved by stretching the resampling filter by a factor max(1, 1 / scale), which means that when downsampling, more input pixels contribute to an output pixel.
 antialias :Β boolean, if set to true, βlinearβ and βcubicβ interpolation modes will use an antialiasing filter when downscaling. Antialiasing is achieved by stretching the resampling filter by a factor max(1, 1 / scale), which means that when downsampling, more input pixels contribute to an output pixel.
Default value βFalseβ. axes : array, if provided, it specifies a subset of axes that βroiβ, βscalesβ and βsizesβ refer to. If not provided, all axes are assumed [0, 1, β¦, r-1], where r = rank(data). Non-specified dimensions are interpreted as non-resizable. Negative value means counting dimensions from the back. Accepted range is [-r, r-1], where r = rank(data). Behavior is undefined if an axis is repeated.
 axes : array, if provided, it specifies a subset of axes that βroiβ, βscalesβ and βsizesβ refer to. If not provided, all axes are assumed [0, 1, β¦, r-1], where r = rank(data). Non-specified dimensions are interpreted as non-resizable. Negative value means counting dimensions from the back. Accepted range is [-r, r-1], where r = rank(data). Behavior is undefined if an axis is repeated.
Default value βemptyβ. coordinate_transformation_mode : enum, this attribute describes how to transform the coordinate in the resized tensor to the coordinate in the original tensor.
 coordinate_transformation_mode : enum, this attribute describes how to transform the coordinate in the resized tensor to the coordinate in the original tensor.
Default value βhalf_pixelβ. cubic_coeff_a : float, the coefficient βaβ used in cubic interpolation. Two common choice are -0.5 (in some cases of TensorFlow) and -0.75 (in PyTorch). Check out Equation (4) in https://ieeexplore.ieee.org/document/1163711Β for the details. This attribute is valid only if mode is βcubicβ.
 cubic_coeff_a : float, the coefficient βaβ used in cubic interpolation. Two common choice are -0.5 (in some cases of TensorFlow) and -0.75 (in PyTorch). Check out Equation (4) in https://ieeexplore.ieee.org/document/1163711Β for the details. This attribute is valid only if mode is βcubicβ.
Default value β-0.75β. exclude_outside :Β boolean, if set to true, the weight of sampling locations outside the tensor will be set to 0 and the weight will be renormalized so that their sum is 1.0.
 exclude_outside :Β boolean, if set to true, the weight of sampling locations outside the tensor will be set to 0 and the weight will be renormalized so that their sum is 1.0.
Default value βFalseβ. extrapolation_value : float, when coordinate_transformation_mode is βtf_crop_and_resizeβ and x_original is outside the range [0, length_original – 1], this value is used as the corresponding output value.
 extrapolation_value : float, when coordinate_transformation_mode is βtf_crop_and_resizeβ and x_original is outside the range [0, length_original – 1], this value is used as the corresponding output value.
Default value β0β. keep_aspect_ratio_policy : enum, this attribute describes how to interpret theΒ
 keep_aspect_ratio_policy : enum, this attribute describes how to interpret theΒ sizesΒ input with regard to keeping the original aspect ratio of the input, and it is not applicable when theΒ scalesΒ input is used.
Default value βstretchβ. mode : enum, three interpolation modes: βnearestβ (default), βlinearβ and βcubicβ. The βlinearβ mode includes linear interpolation for 1D tensor and N-linear interpolation for N-D tensor (for example, bilinear interpolation for 2D tensor). The βcubicβ mode includes cubic interpolation for 1D tensor and N-cubic interpolation for N-D tensor (for example, bicubic interpolation for 2D tensor).
 mode : enum, three interpolation modes: βnearestβ (default), βlinearβ and βcubicβ. The βlinearβ mode includes linear interpolation for 1D tensor and N-linear interpolation for N-D tensor (for example, bilinear interpolation for 2D tensor). The βcubicβ mode includes cubic interpolation for 1D tensor and N-cubic interpolation for N-D tensor (for example, bicubic interpolation for 2D tensor).
Default value βnearestβ. nearest_mode : enum, four modes: βround_prefer_floorβ (default, as known as round half down), βround_prefer_ceilβ (as known as round half up), βfloorβ, βceilβ. Only used by nearest interpolation. It indicates how to get βnearestβ pixel in input tensor from x_original, so this attribute is valid only if βmodeβ is βnearestβ.
 nearest_mode : enum, four modes: βround_prefer_floorβ (default, as known as round half down), βround_prefer_ceilβ (as known as round half up), βfloorβ, βceilβ. Only used by nearest interpolation. It indicates how to get βnearestβ pixel in input tensor from x_original, so this attribute is valid only if βmodeβ is βnearestβ.
Default value βround_prefer_floorβ. Β training?Β :Β boolean, whether the layer is in training mode (can store data for backward).
Β training?Β :Β boolean, whether the layer is in training mode (can store data for backward).
Default value βTrueβ. Β lda coeff :Β float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Β lda coeff :Β float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value β1β.
 Β name (optional) :Β string, name of the node.
Β name (optional) :Β string, name of the node.
 
			Output parameters
 Y (heterogeneous) –Β T1 : object, N-D tensor after resizing.
 Y (heterogeneous) –Β T1 : object, N-D tensor after resizing.
Type Constraints
T1 in (tensor(bfloat16),Β tensor(bool),Β tensor(complex128),Β tensor(complex64),Β tensor(double),Β tensor(float),Β tensor(float16),Β tensor(int16),Β tensor(int32),Β tensor(int64),Β tensor(int8),Β tensor(string),Β tensor(uint16),Β tensor(uint32),Β tensor(uint64),Β tensor(uint8)) : Constrain input βXβ and output βYβ to all tensor types.
T2 in (tensor(double),Β tensor(float),Β tensor(float16)) : Constrain roi type to float or double.
