HAIBAL Roadmap

The HAIBAL deep learning toolkit project is an ambitious journey that aims to provide the best artificial intelligence development tools.

2021

June

Launch of HAIBAL’s development

Every journey has a beginning and let’s bet that we will succeed in developing a complete deep learning library that is easy to use, ergonomic and suitable for academics and engineers.

July

Making our first convolution in LabVIEW

We are now able to do our first 2D convolution in LabVIEW

 

December

LabVIEW architecture project 

All the main layers are now coded in native LabVIEW.

2022

February

Successful signal prediction test

This example, implemented natively in the HAIBAL library, aims to understand how to train signal prediction model. Our idea is to help our novice users to start simply with machine learning and then hit the moon !

March

Successful Importation from keras test

Our first version of HDF5 importator is now functionnal and make possible to load, edit and run any model from Keras Tensorflow. We import a VGG 16 model from Keras with success.

April

Successful MNIST test

This example, implemented natively in the HAIBAL library, aims to understand how to train, predict, save and load a basic model. Our idea is to help our novice users to start simply with machine learning and then hit the moon !

May

Successful Tiny yolo import from keras and run test

Importing a Tiny YoloV3 Model from Keras with success.

 

June

Optimisation V1

In order to better optimize our inference, we have adopted a new approach to memory. The kernel memory system is now managed in C language.

August

Cuda integration v1

Model run now on Nvidia GPU.

 

September

Launch of our youtube channel

To improve our visibility and better communicate with our community, we are launching our youtube channel on which we will share training videos and applications using HAIBAL.

December

Release of HAIBAL 1.0

After one year of development we are proud to release the first version of HAIBAL, the LabVIEW deep learning toolkit.  

2023

February

Academia program

Give the student access to the HAIBAL toolkit through our university sponsorship program.

March

Ambassador program

A new premium program of selective partnership for independents allowing them to promote and distribute the HAIBAL toolkit.

Cuda integration improvment

The full parallelism process is now possible with our new cuda memory manager.

New save file system

We adopt H5 and JSON file format to save HAIBAL models.

Keras compatibility

We integrate the load of H5 keras model format.

Mai

Release of Graiphic installer and management software

As we want our community to have access to all our packages and the latest updates in an easy way, we decided at the same time to develop our package management and installation tool. 

Release of our computer vision module TIGR

TIGR (Tensor and image by Graiphic) is our vision module which has the particularity of integrating artificial intelligence. TIGR can be used in addition to HAIBAL or separately because it has a complete toolbox of functions that are totally complementary to 𝐇𝐀𝐈𝐁𝐀𝐋 , such as the ability to run YOLO models from TensorFlow, Darknet or ONNX.

June

NVIDIA inception program integration

We have been accepted into 𝐍𝐕𝐈𝐃𝐈𝐀’𝐬 esteemed Inception program, which is a significant milestone for us. 

Upcoming

Reinforcement learning

Release of some reinforcement learning examples.

Upcoming

XILINX FPGA ULTRASCALE +

One of our goal is to make HAIBAL running on Xilinx FPGA ultrascale+ offering our custom new possibilities.

Upcoming

Ubuntu

HAIBAL will be available on UBUNTU