
Automating Physical Knowledge Integration in
Machine Learning

Sarah Ghidalia
CIAD UMR 7533

Université de Bourgogne, UB
F-21000 Dijon, France

Sarah Ghidalia@etu.u-bourgogne.fr

Ouassila Labbani Narsis
CIAD UMR 7533

Université de Bourgogne, UB
F-21000 Dijon, France

ouassila.narsis@u-bourgogne.fr

Christophe Nicolle
CIAD UMR 7533

Université de Bourgogne, UB
F-21000 Dijon, France

Christophe.Nicolle@u-bourgogne.fr

Aurélie Bertaux
CIAD UMR 7533

Université de Bourgogne, UB
F-21000 Dijon, France

aurelie.bertaux@u-bourgogne.fr

Abstract—In a world where training data is often limited or
noisy, how can we improve the reliability of machine learning
models? And how can prior knowledge be integrated into these
models to be closer to reality? This paper introduces Ontology-
based Physics-Informed Machine Learning (OPIML), an innova-
tive approach that formalizes and integrates physical knowledge
into machine learning models using ontology. An illustration of
the approach is provided with the loss function of a neural
network. By using ontologies to automate the transformation
of physical laws into mathematical equations, OPIML paves the
way for more accurate and robust models. Experimental results
demonstrate the successful application of abstract rules in various
material design scenarios, offering a pathway for more robust and
precise models. Later on, this approach could also be extended
to encompass a variety of rule types, including legal and ethical
constraints.

Index Terms—Ontologies, Machine Learning, prior knowledge,
Physics-Informed Machine Learning, Knowledge Integration,
Physical Laws, Loss Function

I. INTRODUCTION

Informed Machine Learning (IML) refers to approaches that
incorporate prior knowledge at different stages of the machine
learning process [1]. It aims to improve the quality of machine
learning models by using a combination of data and prior
knowledge. According to [1], “the prior knowledge comes from
an independent source, is given by formal representations, and
is explicitly integrated into the machine learning pipeline”.
Prior knowledge can be obtained from various sources, in-
cluding scientific knowledge, expert knowledge, or world
knowledge, and can be represented in different forms such
as algebraic equations, differential equations, probabilistic
relations, logic rules, or knowledge graphs [1].

Physics-Informed Machine Learning (PIML) is a specific
approach to IML that integrates physical prior knowledge
into its processing to increase the physical consistency of the
models. This enables the learning process to be guided towards
a set of possible solutions that adhere to relevant scientific
knowledge related to the physical sciences, through the use

of constraints [2]. The challenges of PIML are the same as
those of IML: transforming knowledge into usable constraints
(frequently embedded at the loss function level) and obtaining
models consistent with the laws of physics.

These models are often developed using neural networks.
Adding prior knowledge into neural networks is particularly
useful in cases where training data is limited or noisy, and can
often provide results with better accuracy and physical con-
sistency [3], [4]. Physical knowledge can rarely be integrated
into a neural network as is and must be transformed according
to where it is to be used. Indeed, there are many places where
knowledge can be integrated, whether in the training data, in
the architecture of the neural network, in the learning phase,
or in the evaluation of the model. In this study, we focus on
integrating physical knowledge into the learning phase of the
neural network through its loss function.

To be integrated into the loss function, physical laws often
need to be presented in the form of partial differential equa-
tions (PDEs), which subsequently need to be translated into
executable code within a neural network’s programming. This
requires domain experts who are familiar with the physical
laws relevant to a given application, as they are responsible
for developing the code required for the loss function. As
this last task is complex, we must think about solutions to
make this step easier. Furthermore, prior knowledge’s quality
can vary greatly depending on its source, relevance, and
reliability. If the knowledge is incorrect or inappropriate, it can
lead to errors in the model’s predictions. Better formalizing
knowledge is necessary to enable the reuse of knowledge in
various applications and facilitate the design of all kinds of
knowledge-guided machine learning algorithms [1].

Among knowledge formalization models, ontologies play
an important role [7]. They provide a structured framework
for organizing and representing information, making it easier
to capture, store, and share knowledge in a systematic and
coherent manner. Through the use of ontologies to formalize



the domain-specific physical knowledge held by experts, it is
possible to automate the generation of contextually relevant
partial differential equations (PDEs) suitable for integration
into a neural network’s loss function. The Ontology-based
Physics-Informed Machine Learning (OPIML), as presented
in this paper, strives to achieve this goal. The purpose of
this formalization work is to facilitate the design of informed
neural network models by saving time for designers, for whom
the transformation of business rules into constraints can be
complicated at times.

Our paper is organized as follows: Section II presents work
similar to ours and explains how our approach is different and
more general than that of others. Section III shows how prior
knowledge can be integrated into the loss function of neural
networks. Section IV describes the methodology used to create
an OPIML, in which physical knowledge is formalized in an
ontology for easier integration into a neural network. Section V
outlines the concrete implementation of the OPIML presented
in the previous section. Section VI concludes with a review
of the work accomplished and presents future challenges.

II. RELATED WORK

The machine learning pipeline comprises four fundamental
elements: training data, a problem-specific architecture, a well-
structured learning phase to optimize results, and a final
evaluation [1]. It is important to note that it is possible to
infuse domain knowledge into each of these four phases of
the machine learning model.

Ontologies are frequently used in the construction of train-
ing datasets for feature engineering [8]. This application is
particularly relevant because ontologies confer greater seman-
tic meaning on data, which is advantageous for managing
heterogeneous data [9].

Among the various forms of knowledge representation that
can be applied in an IML model are knowledge graphs and
logical rules, both of which can be represented in ontolo-
gies [1]. Nevertheless, it is relatively rare to find ontologies as
primary knowledge sources for this category of models, and
even rarer in the context of PIML models. The rise of PIML
is relatively recent, as shown by a search on Google Scholar
(via Publish or perish [10]) using the request ”intitle:“Physics-
Informed Machine Learning”” which yields 413 articles, the
oldest of them dating back to 2016. Previous work has mainly
used physical knowledge in the form of partial differential
equations (PDEs) in conjunction with machine learning [11].
However, it should be noted that this work may not have
been explicitly classified under the term “Physics-Informed
Machine Learning”. In these studies, physical knowledge is
often expressed as mathematical equations, which must then
be translated into a programming language to enable their
use in a learning model [2]. Existing works usually focus
on specific scientific laws and are heavily dependent on the
studied application, making it difficult to generalize these
approaches and apply them to other fields or problems without
significant modifications [3], [4].

Using a narrower search criterion in ”publish or perish”
with the query ”intitle: ”Physics-Informed Machine Learning”
AND ontology” yields only three articles as results. [5] refer
to ontologies as a data source for illustration purposes only,
without using them in their work. [6] mention ontology as a
source of knowledge, but do not use it in an automated way in
their work. In [12], ontology is used to improve the activation
function of a neural network, enhancing its ability to predict
bridge deterioration more effectively. This last article is the
only one to use ontology more extensively in a PIML.

To the best of our knowledge, there exists no prior research
paper that has employed ontology to automatically transform a
system’s physical knowledge into programming code suitable
for integration within a neural network’s loss function.

III. TRANSFORMING KNOWLEDGE INTO LOSS FUNCTION
CONSTRAINT

In our approach, our central objective is to integrate physical
knowledge into the learning algorithm by calculating the loss
function of a neural network [13]. The loss function assesses
the ability of a model to produce predictions that are consistent
with the learning data by calculating the difference between
the predicted values and the expected values, to minimize pre-
diction errors [14]. Adding prior knowledge requires additional
attention to produce predictions that are consistent not only
with the training data but also with prior knowledge about the
domain being studied [15].

A common approach to incorporate prior knowledge is to
add additional terms to the loss function in machine learning
models. In the case of PIML for neural networks, the loss
function is often formulated as a weighted combination of
two terms: a data loss term and a physics loss term [16]. The
general formula for the loss function of this kind of neural
networks can be expressed as:

L = Ldata + λLphys (1)

where Ldata is the data loss that measures the error between
the model predictions and the training data, Lphys is the
physics loss that measures the consistency error between the
model predictions and the physical laws of the system, and λ
is a weighting coefficient that controls the relative importance
of the physics loss compared to the data loss [2], [3], [17]. The
term for physical loss, Lphys, can be formulated in different
ways depending on the physical laws governing the system
under study. The physical loss function can be associated with
a global coefficient λ which controls the importance of the
physical loss in the calculation of the total loss function.

It is also possible that the system being studied must
respect multiple physical constraints. In this case, the physical
loss function corresponds to the sum of the physical loss
terms associated with each of the constraints. Adding these
physical constraints to the loss function ensures that the
model generates predictions that are not only accurate but also
compliant with physical rules, which is particularly important



Fig. 1. Ontology-based Physics-Informed Machine Learning (OPIML) architecture

for ensuring the consistency of the model outputs. The physical
loss term is given by: ∑

i

λiLphys, i (2)

where i represents each of the different physical constraints,
λi is the weighting coefficient associated with each physical
constraint, and Lphys, i is the corresponding physical loss for
each constraint. Thus, physical loss terms are incorporated into
the total loss function to ensure that the model respects specific
physical constraints while minimizing the overall loss function
given by:

L = Ldata+
∑
i

λiLphys,i (3)

In this last equation, Ldata represents the loss associated
with the data, which measures how far the model predictions
are from the true values, while the weighted sum of the phys-
ical loss terms

∑
iλiLphys,i measures how well the model

predictions comply with the different physical constraints.
In general, to integrate physical constraints into the loss

function, it is necessary to formalize mathematical equations
that reflect physical laws and include them in the loss function.
The parameters of the learning model are then adjusted to
minimize the loss function while respecting the imposed
physical constraints. For example, we can model the behavior
of a fluid by adding energy and mass conservation equations to
the loss function. This approach guides the learning to ensure
compliance with these physical constraints.

However, adding physical constraints requires specific do-
main knowledge and physical laws to be incorporated into
the model. Although these approaches use prior knowledge to
mitigate the shortcomings of purely data-driven methods, the

technique remains artisanal and lacks the flexibility to identify
and formalize the most appropriate physical knowledge.

PIMLs aim to increase the consistency of predictions by in-
tegrating prior knowledge [1]. However, this knowledge often
requires preprocessing to convert it into usable constraints in
the model. To optimize the integration of prior knowledge into
the learning process, it is essential to define and formalize this
knowledge.

To use knowledge in the loss function, this prior knowledge
must be transformed into constraints. Depending on the form
of the knowledge, this transformation will have to follow
different processes [3], [18], [19]. First-order logic predicates
cannot be integrated into a loss function as is; they must
be processed before [18], [19]. Similarly, an equation or
correlation rule is often transformed into a Partial Differential
Equation (PDE) to be used in the loss function [3]. Formalizing
knowledge aims to facilitate its transformation into constraints.

IV. ONTOLOGY-BASED PHYSICS-INFORMED MACHINE
LEARNING

We aim to formalize physical knowledge to integrate it more
easily into the loss function of a neural network. To achieve
this, it is necessary to (1) determine the rules that the appli-
cation must follow in a particular domain, (2) associate these
rules with the appropriate physical law and (3) formalize them
into a mathematical equation to determine the Lphys term. To
achieve this goal, we designed an Ontology-based Physics-
Informed Machine Learning (OPIML), described in Figure 1,
which incorporates two specialized ontologies adapted to the
first two tasks and is complemented by Python code to handle
the third task.

A. Determination of rules for a particular domain

The first ontology (“domain ontology” in Figure 1) concerns
the knowledge related to the application being studied, as well



as the associated rules. For example, an inverse relationship
between air conditioning (C) and the temperature of a room
(T ): as the air conditioning increases, the room’s temperature
decreases [4]. In fatigue material, we find a similar relationship
between the stress amplitude (S) imposed on the metal and its
fatigue life (L): as stress increases, fatigue life decreases [3].
For the first example, the computation of the partial derivative
∂T
∂C < 0 formalizes the inverse relationship between air
conditioning (C) and the temperature of a room (T ). In the
second example, the computation of the partial derivative
∂L
∂S < 0 formalizes the inverse relationship between stress
(S) and fatigue (L). In two separate fields, such as building
and materials science, some applications require very similar
physical laws.

B. Association of rules with a physical law

The fundamental laws of physics can be presented as ab-
stract rules that can be adapted to different contexts. Using the
previous example, the abstract rule is “if A increases, then B
decreases” with A and B being different objects depending on
the application domain. This abstract rule, a partial derivative
∂B
∂A < 0, is formalized in the second ontology, named “physics
ontology” in Figure 1.

Thus, each specific rule present in the “domain ontology” is
associated with at least one abstract physical law represented
in the “physics ontology”. The association is made through a
subsumption link, i.e. the specific rule “as the air conditioning
increases, the room’s temperature decreases” is an instance of
the class “if A increases, then B decreases”. Each physical
rule, specific to a particular context and associated with
particular variables, is, in fact, an instantiation of a more
generic physical law.

Our physics ontology (presented in Figure 2) is able to
represent a situation with several rules that can be applied in
the context of this situation. These rules are abstract rules that
represent generic knowledge such as the law of proportionality
(“if A increases, then B increases”) or the law of negative
relationship (“if A increases, then B decreases”) as seen in
Figure 3.

Fig. 2. Physics ontology

These rules are associated with specific functions that
correspond to their transformation for use in a loss function.
Thus, the law of proportionality becomes “the derivative of B
concerning A is positive” and the law of negative relationship
becomes “the derivative of B concerning A is negative”

Fig. 3. Negative relationship’s rule

as seen in Figure 4. The link between the rules and their
corresponding functions is realized thanks to the SWRL rules,
so it can be inferred by an inference engine like HermiT [20] or
Pellet [21]. The ontology is based on the OWL-Lite language,
so it corresponds to the SHIF description logic.

Fig. 4. Negative relationship’s equation

The domain ontology uses this second ontology to specify
the general physical law that will then constrain the neural
network through the loss function.

C. Formalization of physical laws into mathematical equa-
tions

To incorporate physics rules into the loss function through
the Lphys term, it is imperative to express these rules as
mathematical equations, frequently taking the form of partial
differential equations.

For each abstract physical law formalized in the physics
ontology, a corresponding Python function has been developed
to represent it. This function accepts contextual variables from
the domain ontology as input parameters to adapt to each
specific rule. Through transitivity, this function can calculate
the Lphys,i term corresponding to a rule i according to the
parameters given by the domain ontology. The final loss
function can therefore cover several different rules, each of
which is added to the physical loss, as shown by Equation 2
in paragraph III.

For example, a Python function can calculate the equation
∂B
∂A < 0 corresponding to the rule of negative relationship (“if
A increases, then B decreases”) when parameters A and B
are known. Algorithm 1 is the pseudo-code of this function
i.e. the calculated loss term for each rule about a negative
relationship.

To explain the pseudo-code, consider the following:



Algorithm 1 Negative Relationship law Penalty
Require: Tensors x and y
Ensure: LNegRel

1: procedure PENALTY(x, y) ▷ The loss penalty for x
2: Initialize tape to record operations
3: Record operations on x
4: y ← ModelOutput(x)
5: dx ← ComputeGradient(y, x) //First derivative of y

with respect to x
6: n← SizeOfFirstAxis(x)
7: state indicator← IndicatorTensors(dx > 0)

8: loss← state indicator×dx2

n
9: LNegRel ← ReduceToSumOfTensors(loss)

10: return LNegRel ▷ The loss penalty for negative
relationship

11: end procedure

1) Initialize tape to record operations: This line sets up a
“tape” to keep track of operations performed on tensors.
This is essential for automatic differentiation, which is
used later to compute gradients.

2) Record operations on x: This line specifies that oper-
ations performed on the tensor x should be recorded on
the tape. This is necessary for computing the gradient
concerning x.

3) y ← ModelOutput(x): This line calculates the output
y of the machine learning model given the input x.

4) dx← ComputeGradient(y, x): This line computes the
first derivative dx of the output y with respect to the
input x. This is done using the operations recorded on
the tape.

5) n ← SizeOfFirstAxis(x): This line calculates n, the
size of the first axis of the tensor x. This is used later
to normalize the loss.

6) state indicator← IndicatorTensor(dx > 0): This line
creates an indicator tensor that has the same shape as
dx. Each element of the indicator tensor is set to 1 if
the corresponding element in dx is greater than 0, and
0 otherwise. Indeed, when the rule “if A increases, B
decreases” is observed, then dx is less than 0 (i.e. ∂B

∂A <
0). We don’t want to add a penalty when this constraint
is met.

7) loss ← (state indicator × dx2)/n: This line calculates
the loss by squaring dx, element-wise multiplying it by
the state indicator, and then dividing by n. If the tensor
indicator is set to 1, this will have the effect of adding
a penalty, equal to the square of the derivative, to the
loss function, as the rule is not respected. If the tensor
indicator is set to 0, no penalty will be added to the loss
function.

8) LNegRel ← SumOfTensor(loss): This line sums up all
the elements of the loss tensor to get a single scalar
value, which represents the total loss.

9) return LNegRel: This line returns the calculated total

loss of an instance of the negative relationship law as
the output of the algorithm.

The rules associated with each application are retrieved
using the OwlReady2 library [22]. The Pellet inference engine,
accessible via Owlready2, transmits all the rules associated
with an application to the Python code, specifying for each
rule the abstract physical function assigned to it. As the context
parameters are formalized in the ontology, they can be easily
passed on to the Python function. This process ensures that all
knowledge extracted from the ontology is effectively converted
to be used in the programming code essential for neural
network implementation.

Thanks to this methodology, physical loss functions are
written only once in Python and can be reused in different
projects. The ultimate aim is to have a physics ontology
that is complete enough that modifications become necessary
exclusively within the domain ontology, which depends on the
application case.

V. EXPERIMENT

The proposed OPIML is developed using Python v3.9,
Keras v2.10, Protégé v5.5, and OwlReady2 v0.4 on a Mac
mini with an Apple M1 processor and 8 GB of RAM.

The first task is to identify abstract functions and formalize
them in the physical ontology. In our case, we took the
rule of proportionality and its inverse relation as examples.
Because they are associated with various physical phenomena
and are used in fields as varied as materials science [3], or
BIM [4]. These abstract functions can then be applied to
context-specific rules. The example chosen here is taken from
materials science, as the data is readily available for an initial
proof of concept. The development of a domain ontology
allows us to represent all the rules associated with this use
case. Each rule is identified by an abstract function from the
physics ontology created earlier. Finally, the abstract physical
functions are linked to their corresponding equations using the
Owlready2 library. The resulting Python programming code
can then be inserted into the loss function of a neural network.

Through this approach, the knowledge formally documented
in the ontology is automatically translated, making it easy to
incorporate into the learning phase of a neural network.

A. Data description

This first experiment uses fatigue datasets from three dif-
ferent materials, namely steel wire, 2024-T4 aluminum alloy
(2024-T4), and the annealed aluminum wire (AAW) presented
by [3]. Fatigue life refers to the number of cycles or the amount
of time that a material or structure can withstand repeated
loading and unloading cycles before it fails due to fatigue.
Fatigue failure typically occurs at a stress level that is below
the material’s ultimate strength, but is still high enough to
cause damage over time. The goal of the model is to build
a function of stress level that predicts when the material will
fail. The data is transformed to logscale and standardized as
recommended by [3].



B. Context-specific rules about fatigue material

The domain ontology allows us to instantiate a new situation
(e.g. the constraints related to the prediction of fatigue life on
the steel) with the associated rules as illustrated in Figure 5.

Fig. 5. Negative relationship’s equation

Several rules can be associated with each situation. Here,
we use the rules presented by [3]. The first rule that the model
must verify is that as the stress increases, the average fatigue
life decreases, as seen in Figure 6. The different parameters are
given for each individual: the general rule that should apply
(here “negative relationship”), the factor A (here “stress (Mpa)
log”), and the target value B (here “life log”) are given. The
variables A and B correspond to the names of the columns
in the dataset. As this first rule is identified as belonging to
the “negative relationship” class, the inference engine deduces
that it must use the “negative relationship equation” function
to apply this constraint within the loss function.

Fig. 6. First rule to predict the fatigue life of steel

This domain ontology, containing the situations and their
associated rules, is loaded by the OwlReady2 library, which
takes care of the inferences (thanks to the Pellet inference
engine) to link them to the abstract physical functions and then
by transitivity to the Python functions to be used to calculate
the Lphys,i term of each (c.f. section IV-C).

This process enables the expert to describe his rules in the
domain ontology without having to worry about coding each
of the associated Python functions.

C. Results
1) prediction performance: We have created three different

models for comparison with the same architecture: a fully
connected neural network containing two hidden layers with
16 neurons for each hidden layer. The first is a baseline model
whose loss function does not include a Lphys term. The second
is a PIML model with a loss function defined by equation 1.
Finally, the third is an OPIML model identical to the previous
one, but for which the physical knowledge is provided by an
ontology. The objective is to determine whether the automatic
integration of physics rules within the loss function is costly
in terms of performance.

Prediction performance, illustrated by the coefficient of
determination (R2), root mean square error (RMSE) and
mean absolute percentage error (MAPE), shows that the two
PIMLs (PIML model and OPIML model) for the Wire Steel
and 2024-T4 datasets perform slightly better than the baseline
model (c.f. Tables I, II). This is not the case for the AAW
dataset, for which the baseline model performs slightly better
(c.f. Table III).
It is important to note that the results of the two physics-
based models have exactly the same performance. Thus the
automation of the integration of mathematical functions in the
loss function does not penalize the performance of the system
in any way.

TABLE I
PERFORMANCE AND CONSISTENCY METRICS FOR STEEL WIRE DATASET

Steel Wire Baseline PIML (λ = 770) OPIML (λ = 770)

R2 0.76 0.77 0.77
RMSE 1.428 1.415 1.415
MAPE 0.058 0.059 0.059
Lphys 2.25 0 0

TABLE II
PERFORMANCE AND CONSISTENCY METRICS FOR 2024-T4 DATASET

2024-T4 Baseline PIML (λ = 500) OPIML (λ = 500)

R2 0.92 0.93 0.93
RMSE 0.512 0.459 0.459
MAPE 0.02 0.02 0.02
Lphys 3.9 0 0

TABLE III
PERFORMANCE AND CONSISTENCY METRICS FOR AAW DATASET

AAW Baseline PIML (λ = 1000) OPIML (λ = 1000)

R2 0.94 0.93 0.93
RMSE 0.374 0.386 0.386
MAPE 0.027 0.028 0.028
Lphys 0.51 0 0

2) Consistency analysis: However, as mentioned above,
these performance scores only show the correspondence be-
tween the results obtained and the input data. They do



not demonstrate the consistency between the results and the
physics rules that the model must verify. To measure consis-
tency between physical rules and model results, we simply
reuse the global term Lphys used in the loss function of the
two PIMLs models.

Lphys term can be considered as an inconsistency score: the
higher it is, the less the model agrees with the laws of physics.
Indeed, the main objective is to minimize the loss function as
the model is trained, so the more the physical constraints are
respected, the smaller the inconsistency score will be.

In the case of our two physics-informed models, this term
Lphys is always equal to 0, which means that these models are
compatible with the laws of physics of which the loss function
is informed. On the other hand, this same score is always
greater than 0 in the case of the baseline model, meaning that
it is not completely consistent with the laws of physics. Both
physics-based models are likely to generalize better on new
data, an expected result already demonstrated by [3].

Nevertheless, the main objective of our work is to propose
a generic method for formalizing knowledge. From this point
of view, in the case of the fatigue material application, we are
able to present identical results for PIML and OPIML models
as shown in Tables I, II and III.

VI. CONCLUSION AND FUTURE DIRECTIONS

This paper presents an Ontology-based Physics-Informed
Machine Learning model, called OPIML, which is an evo-
lution of PIML in which knowledge is formalized as an
ontology. To this purpose, we have proposed a generic ap-
proach modeling the set of physical rules required in two
ontologies, using fatigue material as the application domain for
our experimentation [3]. Those two ontologies allow us to (1)
determine the rules that the application must follow in a partic-
ular domain, and (2) associate these rules with the appropriate
physical law to formalize it into a mathematical equation. This
equation can then be automatically transformed into Python
programming code to be added to the loss function of a neural
network via the Lphys term. We conducted experiments with
OPIML using fatigue materials and successfully applied the
same abstract rules across various scenarios involving different
materials. This implies that the use of ontologies as a source of
knowledge does not influence the performance results obtained
with the same neural network.

The benefits of using an ontology are manifold: the for-
malization of knowledge facilitates its re-use in different
contexts, automates the addition of physical constraints to
neural networks for non-specialists in machine learning, and
therefore avoids some programming errors. It should be noted
that these abstract rules can be used in a very different domain,
such as forecasting the temperature in a building [4].

In our experimentation, we used a simple fully-connected
neural network architecture that contains two hidden layers
(with 16 neurons for each of the hidden layers) as described
by [3]. It is often up to the data scientist to choose this architec-
ture, which can change depending on the context. A possible
evolution would be to formally describe this architecture in

the domain ontology, so that it can be modified more easily.
This is a technique that could be developed in the future.

Until now, a global weight for all rules related to physical
constraints has been used. It would be necessary to modify
the code we have developed to be able to individually adjust
the weight associated with each rule in the loss function.
Furthermore, the score of each constraint added to the loss
function when violated is arbitrarily equal to the square of its
derivative. In the future, it should be possible to define how
this score is calculated in the ontology.

The existing physical ontology needs to be supplemented
with additional physical rules to improve its applicability in
various projects. This process involves the identification and
understanding of new physical rules, which serve as the basis
for the development of abstract rules. For example, by adding
laws relating to kinetics, which have applications in many
fields such as water or air quality, as well as road traffic
forecasting [23].

Finally, we wish to extend our scope beyond the incorpo-
ration of physical rules; we aim to incorporate various other
types of rules, including legal, ethical usage, or business rules.
To achieve this, we need to explore in depth all possible
transformations to obtain constraints that can be incorporated
into a loss function, and realize these transformations through
ontologies.

ACKNOWLEDGMENT

This research was supported by European project H2020
RESPONSE1 (Grant Agreement nº 957751), for which we
present the first results of our approach.

REFERENCES

[1] L. Von Rueden, S. Mayer, K. Beckh, B. Georgiev, S. Giesselbach, R.
Heese, B. Kirsch, J. Pfrommer, A. Pick, R. Ramamurthy, and Others “In-
formed Machine Learning–A taxonomy and survey of integrating prior
knowledge into learning systems,” IEEE Transactions On Knowledge
And Data Engineering. vol. 35, 614-633, 2021.

[2] G. Karniadakis, I. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L.
Yang, “Physics-informed machine learning,” Nature Reviews Physics.
vol. 3, 422-440, 2021.

[3] T. Zhou, S. Jiang, T. Han, S.-P. Zhu, and Y. Cai, “A physically con-
sistent framework for fatigue life prediction using probabilistic physics-
informed neural network,” International Journal of Fatigue, vol. 166, p.
107234, Jan. 2023, doi: 10.1016/j.ijfatigue.2022.107234.

[4] L. Di Natale, B. Svetozarevic, P. Heer, and C. N. Jones, “Physically
Consistent Neural Networks for building thermal modeling: Theory
and analysis,” Applied Energy, vol. 325, p. 119806, Nov. 2022, doi:
10.1016/j.apenergy.2022.119806.

[5] S. Liu, B. B. Kappes, B. Amin-ahmadi, O. Benafan, X. Zhang,
and A. P. Stebner, ‘Physics-informed machine learning for composi-
tion – process – property design: Shape memory alloy demonstra-
tion’, Applied Materials Today, vol. 22, p. 100898, Mar. 2021, doi:
10.1016/j.apmt.2020.100898.

[6] J. Kim, X. Zhao, A. U. A. Shah, and H. Kang, ‘Physics-Informed
Machine Learning-Aided System Space Discretization’, in NPIC&HMIT
2021, Online, Jun. 2021. doi: 10.13182/T124-34648.

[7] A. Maedche, H. Schnurr, S. Staab, and R. Studer, “Representation
language-neutral modeling of ontologies,” Proceedings Of The German
Workshop ”Modellierung-2000”, Koblenz, Germany, pp. 129-142, 2000.

[8] S. S. Sahoo et al., “Ontology-based feature engineering in machine
learning workflows for heterogeneous epilepsy patient records,” Sci Rep,
vol. 12, no. 1, Art. no. 1, Nov. 2022, doi: 10.1038/s41598-022-23101-3.

1https:h2020response.eu/



[9] B. Zhou et al., “SemML: Facilitating development of ML models for
condition monitoring with semantics,” Journal of Web Semantics, vol.
71, p. 100664, 2021, doi: https://doi.org/10.1016/j.websem.2021.100664.

[10] Harzing, A.W. (2007) Publish or Perish, available from
https://harzing.com/resources/publish-or-perish

[11] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for
solving ordinary and partial differential equations,” IEEE Transactions
on Neural Networks, vol. 9, no. 5, pp. 987–1000, Sep. 1998, doi:
10.1109/72.712178.

[12] X. Hu and K. Liu, “Structural Deterioration Knowledge Ontology
towards Physics-Informed Machine Learning for Enhanced Bridge De-
terioration Prediction,” Journal of Computing in Civil Engineering,
vol. 37, no. 1, p. 04022051, Jan. 2023, doi: 10.1061/(ASCE)CP.1943-
5487.0001066.

[13] Q. Wang, Y. Ma, K. Zhao, and Y. Tian, “A comprehensive survey of
loss functions in machine learning,” Annals Of Data Science. pp. 1-26,
2020.

[14] T. Mitchell, Machine Learning, McGraw-Hill Science/Engineering/-
Math, New York, NY, 1997

[15] T. Yu, S. Simoff, and T. Jan, ‘VQSVM: A case study for incor-
porating prior domain knowledge into inductive machine learning’,
Neurocomputing, vol. 73, no. 13, pp. 2614–2623, Aug. 2010, doi:
10.1016/j.neucom.2010.05.007.

[16] S. Cai, Z. Wang, S. Wang, P. Perdikaris, and G. Karniadakis, “Physics-
informed neural networks for heat transfer problems,” Journal Of Heat
Transfer. vol. 143, 2021.

[17] Y. Chen, Q. Yang, Z. Chen, C. Yan, S. Zeng, and M. Dai, “Physics-
informed neural networks for building thermal modeling and demand
response control,” Building And Environment. vol. 234 pp. 110149,
2023.

[18] M. Medina Grespan, A. Gupta, and V. Srikumar, ‘Evaluating Relax-
ations of Logic for Neural Networks: A Comprehensive Study’, in
Proceedings of the Thirtieth International Joint Conference on Arti-
ficial Intelligence, Montreal, Canada: International Joint Conferences
on Artificial Intelligence Organization, Aug. 2021, pp. 2812–2818. doi:
10.24963/ijcai.2021/387.

[19] L. Gan, K. Kuang, Y. Yang, and F. Wu, ‘Judgment Prediction via
Injecting Legal Knowledge into Neural Networks’, Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 35, no. 14, Art. no. 14,
May 2021, doi: 10.1609/aaai.v35i14.17522.

[20] R. Shearer, B. Motik, and I. Horrocks, “HermiT: A Highly-Efficient
OWL Reasoner,” Owled, vol. 432, p. 91, Oct. 2008.

[21] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical OWL-DL reasoner,” Journal of Web Semantics, vol. 5, no. 2,
pp. 51–53, Jun. 2007, doi: 10.1016/j.websem.2007.03.004.

[22] J.-B. Lamy, ‘Owlready: Ontology-oriented programming in Python
with automatic classification and high level constructs for biomedical
ontologies’, Artificial Intelligence in Medicine, vol. 80, pp. 11–28, Jul.
2017, doi: 10.1016/j.artmed.2017.07.002.

[23] Y. Liang et al., “Mixed-Order Relation-Aware Recurrent Neu-
ral Networks for Spatio-Temporal Forecasting,” IEEE Transac-
tions on Knowledge and Data Engineering, pp. 1–15, 2022, doi:
10.1109/TKDE.2022.3222373.


